xtensor
|
Functions | |
template<class T = void, class E , class X , class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< xtl::negation< is_reducer_options< X > >, xtl::negation< xtl::is_integral< std::decay_t< X > > > > = 0> | |
auto | xt::sum (E &&e, X &&axes, EVS es=EVS()) |
Sum of elements over given axes. | |
template<class T = void, class E , class X , class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< xtl::negation< is_reducer_options< X > >, xtl::negation< xtl::is_integral< std::decay_t< X > > > > = 0> | |
auto | xt::prod (E &&e, X &&axes, EVS es=EVS()) |
Product of elements over given axes. | |
template<class T = void, class E , class X , class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< xtl::negation< is_reducer_options< X > > > = 0> | |
auto | xt::mean (E &&e, X &&axes, EVS es=EVS()) |
Mean of elements over given axes. | |
template<class T = void, class E , class W , class X , class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< is_reducer_options< EVS >, xtl::negation< xtl::is_integral< X > > > = 0> | |
auto | xt::average (E &&e, W &&weights, X &&axes, EVS ev=EVS()) |
Average of elements over given axes using weights. | |
template<class T = void, class E , class X , class D , class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< xtl::negation< is_reducer_options< X > >, xtl::is_integral< D > > = 0> | |
auto | xt::variance (E &&e, X &&axes, const D &ddof, EVS es=EVS()) |
Compute the variance along the specified axes. | |
template<class T = void, class E , class X , class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< xtl::negation< is_reducer_options< X > > > = 0> | |
auto | xt::stddev (E &&e, X &&axes, EVS es=EVS()) |
Compute the standard deviation along the specified axis. | |
template<class E , class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< is_reducer_options< EVS > > = 0> | |
auto | xt::minmax (E &&e, EVS es=EVS()) |
Minimum and maximum among the elements of an array or expression. | |
template<class T > | |
auto | xt::diff (const xexpression< T > &a, std::size_t n=1, std::ptrdiff_t axis=-1) |
Calculate the n-th discrete difference along the given axis. | |
template<class T > | |
auto | xt::trapz (const xexpression< T > &y, double dx=1.0, std::ptrdiff_t axis=-1) |
Integrate along the given axis using the composite trapezoidal rule. | |
template<class T , class E > | |
auto | xt::trapz (const xexpression< T > &y, const xexpression< E > &x, std::ptrdiff_t axis=-1) |
Integrate along the given axis using the composite trapezoidal rule. | |
template<class E , class X , class EVS , class > | |
auto | xt::norm_l0 (E &&e, X &&axes, EVS es) noexcept |
L0 (count) pseudo-norm of an array-like argument over given axes. | |
template<class E , class X , class EVS , class > | |
auto | xt::norm_l1 (E &&e, X &&axes, EVS es) noexcept |
L1 norm of an array-like argument over given axes. | |
template<class E , class X , class EVS , class > | |
auto | xt::norm_sq (E &&e, X &&axes, EVS es) noexcept |
Squared L2 norm of an array-like argument over given axes. | |
template<class E , class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< is_xexpression< E > > = 0> | |
auto | xt::norm_l2 (E &&e, EVS es=EVS()) noexcept |
L2 norm of a scalar or array-like argument. | |
template<class E , class X , class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< is_xexpression< E >, xtl::negation< is_reducer_options< X > > > = 0> | |
auto | xt::norm_l2 (E &&e, X &&axes, EVS es=EVS()) noexcept |
L2 norm of an array-like argument over given axes. | |
template<class E , class X , class EVS , class > | |
auto | xt::norm_linf (E &&e, X &&axes, EVS es) noexcept |
Infinity (maximum) norm of an array-like argument over given axes. | |
template<class E , class X , class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< xtl::negation< is_reducer_options< X > > > = 0> | |
auto | xt::norm_lp_to_p (E &&e, double p, X &&axes, EVS es=EVS()) noexcept |
p-th power of the Lp norm of an array-like argument over given axes. | |
template<class E , class X , class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< xtl::negation< is_reducer_options< X > > > = 0> | |
auto | xt::norm_lp (E &&e, double p, X &&axes, EVS es=EVS()) |
Lp norm of an array-like argument over given axes. | |
template<class E , class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< is_xexpression< E > > = 0> | |
auto | xt::norm_induced_l1 (E &&e, EVS es=EVS()) |
Induced L1 norm of a matrix. | |
template<class E , class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< is_xexpression< E > > = 0> | |
auto | xt::norm_induced_linf (E &&e, EVS es=EVS()) |
Induced L-infinity norm of a matrix. | |
|
inline |
Average of elements over given axes using weights.
Returns an xreducer for the mean of elements over given axes.
e | an xexpression |
weights | xexpression containing weights associated with the values in e |
axes | the axes along which the mean is computed (optional) |
T | the value type used for internal computation. The default is E::value_type . T is also used for determining the value type of the result, which is the type of T() + E::value_type(). You can pass big_promote_value_type_t<E>` to avoid overflow in computation. |
auto xt::diff | ( | const xexpression< T > & | a, |
std::size_t | n = 1, | ||
std::ptrdiff_t | axis = -1 ) |
Calculate the n-th discrete difference along the given axis.
Calculate the n-th discrete difference along the given axis. This function is not lazy (might change in the future).
a | an xexpression |
n | The number of times values are differenced. If zero, the input is returned as-is. (optional) |
axis | The axis along which the difference is taken, default is the last axis. |
|
inline |
Mean of elements over given axes.
Returns an xreducer for the mean of elements over given axes.
e | an xexpression |
axes | the axes along which the mean is computed (optional) |
es | the evaluation strategy (optional) |
T | the value type used for internal computation. The default is E::value_type . T is also used for determining the value type of the result, which is the type of T() + E::value_type() . You can pass big_promote_value_type_t<E> to avoid overflow in computation. |
|
inline |
Minimum and maximum among the elements of an array or expression.
Returns an xreducer for the minimum and maximum of an expression's elements.
e | an xexpression |
es | evaluation strategy to use (lazy (default), or immediate) |
std::array<value_type, 2>
, whose first and second element represent the minimum and maximum respectively
|
inline |
Induced L1 norm of a matrix.
Returns an xreducer for the induced L1 norm (i.e. the maximum of the L1 norms of e's columns).
e | a 2D xexpression |
es | evaluation strategy to use (lazy (default), or immediate) |
|
inline |
Induced L-infinity norm of a matrix.
Returns an xreducer for the induced L-infinity norm (i.e. the maximum of the L1 norms of e's rows).
e | a 2D xexpression |
es | evaluation strategy to use (lazy (default), or immediate) |
L0 (count) pseudo-norm of an array-like argument over given axes.
Returns an xreducer for the L0 pseudo-norm of the elements across given axes.
e | an xexpression |
axes | the axes along which the norm is computed (optional) |
es | evaluation strategy to use (lazy (default), or immediate) |
L1 norm of an array-like argument over given axes.
Returns an xreducer for the L1 norm of the elements across given axes.
e | an xexpression |
axes | the axes along which the norm is computed (optional) |
es | evaluation strategy to use (lazy (default), or immediate) |
|
inlinenoexcept |
L2 norm of an array-like argument over given axes.
Returns an xreducer for the L2 norm of the elements across given axes.
e | an xexpression |
es | evaluation strategy to use (lazy (default), or immediate) |
axes | the axes along which the norm is computed |
sqrt(norm_sq(e, axes))
) (or xcontainer, depending on evaluation strategy) Infinity (maximum) norm of an array-like argument over given axes.
Returns an xreducer for the infinity norm of the elements across given axes.
e | an xexpression |
axes | the axes along which the norm is computed (optional) |
es | evaluation strategy to use (lazy (default), or immediate) |
|
inline |
Lp norm of an array-like argument over given axes.
Returns an xreducer for the Lp norm (p != 0) of the elements across given axes.
e | an xexpression |
p | |
axes | the axes along which the norm is computed (optional) |
es | evaluation strategy to use (lazy (default), or immediate) |
|
inlinenoexcept |
p-th power of the Lp norm of an array-like argument over given axes.
Returns an xreducer for the p-th power of the Lp norm of the elements across given axes.
e | an xexpression |
p | |
axes | the axes along which the norm is computed (optional) |
es | evaluation strategy to use (lazy (default), or immediate) |
Squared L2 norm of an array-like argument over given axes.
Returns an xreducer for the squared L2 norm of the elements across given axes.
e | an xexpression |
axes | the axes along which the norm is computed (optional) |
es | evaluation strategy to use (lazy (default), or immediate) |
|
inline |
Product of elements over given axes.
Returns an xreducer for the product of elements over given axes.
e | an xexpression |
axes | the axes along which the product is computed (optional) |
ddof | delta degrees of freedom (optional). The divisor used in calculations is N - ddof, where N represents the number of elements. By default ddof is zero. |
es | evaluation strategy of the reducer |
T | the value type used for internal computation. The default is E::value_type . T is also used for determining the value type of the result, which is the type of T() * E::value_type() . You can pass big_promote_value_type_t<E> to avoid overflow in computation. |
|
inline |
Compute the standard deviation along the specified axis.
Returns the standard deviation, a measure of the spread of a distribution, of the array elements. The standard deviation is computed for the flattened array by default, otherwise over the specified axis.
Note: this function is not yet specialized for complex numbers.
e | an xexpression |
axes | the axes along which the standard deviation is computed (optional) |
es | evaluation strategy to use (lazy (default), or immediate) |
T | the value type used for internal computation. The default is E::value_type . T is also used for determining the value type of the result, which is the type of T() + E::value_type() . You can pass big_promote_value_type_t<E> to avoid overflow in computation. |
|
inline |
Sum of elements over given axes.
Returns an xreducer for the sum of elements over given axes.
e | an xexpression |
axes | the axes along which the sum is performed (optional) |
es | evaluation strategy of the reducer |
T | the value type used for internal computation. The default is E::value_type . T is also used for determining the value type of the result, which is the type of T() + E::value_type() . You can pass big_promote_value_type_t<E> to avoid overflow in computation. |
auto xt::trapz | ( | const xexpression< T > & | y, |
const xexpression< E > & | x, | ||
std::ptrdiff_t | axis = -1 ) |
Integrate along the given axis using the composite trapezoidal rule.
Returns definite integral as approximated by trapezoidal rule. This function is not lazy (might change in the future).
y | an xexpression |
x | an xexpression representing the sample points corresponding to the y values. |
axis | the axis along which to integrate. |
auto xt::trapz | ( | const xexpression< T > & | y, |
double | dx = 1.0, | ||
std::ptrdiff_t | axis = -1 ) |
Integrate along the given axis using the composite trapezoidal rule.
Returns definite integral as approximated by trapezoidal rule. This function is not lazy (might change in the future).
y | an xexpression |
dx | the spacing between sample points (optional) |
axis | the axis along which to integrate. |
|
inline |
Compute the variance along the specified axes.
Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed for the flattened array by default, otherwise over the specified axes.
Note: this function is not yet specialized for complex numbers.
e | an xexpression |
axes | the axes along which the variance is computed (optional) |
ddof | delta degrees of freedom (optional). The divisor used in calculations is N - ddof, where N represents the number of elements. By default ddof is zero. |
es | evaluation strategy to use (lazy (default), or immediate) |
T | the value type used for internal computation. The default is E::value_type . T is also used for determining the value type of the result, which is the type of T() + E::value_type() . You can pass big_promote_value_type_t<E> to avoid overflow in computation. |