|
template<class E > |
auto | xt::nan_to_num (E &&e) |
| Convert nan or +/- inf to numbers.
|
|
template<class T = void, class E , class X , class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< xtl::negation< is_reducer_options< X > >, xtl::negation< xtl::is_integral< std::decay_t< X > > > > = 0> |
auto | xt::nanmin (E &&e, X &&axes, EVS es=EVS()) |
| Minimum element over given axes, ignoring NaNs.
|
|
template<class T = void, class E , class X , class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< xtl::negation< is_reducer_options< X > >, xtl::negation< xtl::is_integral< std::decay_t< X > > > > = 0> |
auto | xt::nanmax (E &&e, X &&axes, EVS es=EVS()) |
| Maximum element along given axes, ignoring NaNs.
|
|
template<class T = void, class E , class X , class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< xtl::negation< is_reducer_options< X > >, xtl::negation< xtl::is_integral< std::decay_t< X > > > > = 0> |
auto | xt::nansum (E &&e, X &&axes, EVS es=EVS()) |
| Sum of elements over given axes, replacing NaN with 0.
|
|
template<class T = void, class E , class X , class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< xtl::negation< is_reducer_options< X > >, xtl::negation< xtl::is_integral< std::decay_t< X > > > > = 0> |
auto | xt::nanprod (E &&e, X &&axes, EVS es=EVS()) |
| Product of elements over given axes, replacing NaN with 1.
|
|
template<class T = void, class E > |
auto | xt::nancumsum (E &&e, std::ptrdiff_t axis) |
| Cumulative sum, replacing nan with 0.
|
|
template<class T = void, class E > |
auto | xt::nancumprod (E &&e, std::ptrdiff_t axis) |
| Cumulative product, replacing nan with 1.
|
|
template<class T = void, class E , class X , class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< xtl::negation< is_reducer_options< X > > > = 0> |
auto | xt::nanmean (E &&e, X &&axes, EVS es=EVS()) |
| Mean of elements over given axes, excluding NaNs.
|
|
template<class T = void, class E , class X , class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< xtl::negation< is_reducer_options< X > > > = 0> |
auto | xt::nanvar (E &&e, X &&axes, EVS es=EVS()) |
| Compute the variance along the specified axes, excluding NaNs.
|
|
template<class T = void, class E , class X , class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< xtl::negation< is_reducer_options< X > > > = 0> |
auto | xt::nanstd (E &&e, X &&axes, EVS es=EVS()) |
| Compute the standard deviation along the specified axis, excluding nans.
|
|
Compute the standard deviation along the specified axis, excluding nans.
Returns the standard deviation, a measure of the spread of a distribution, of the array elements. The standard deviation is computed for the flattened array by default, otherwise over the specified axis. Excluding NaNs changes the number of elements considered in the statistic.
Note: this function is not yet specialized for complex numbers.
- Parameters
-
e | an xexpression |
axes | the axes along which the standard deviation is computed (optional) |
es | evaluation strategy to use (lazy (default), or immediate) |
- Template Parameters
-
T | the result type. The default is E::value_type . You can pass big_promote_value_type_t<E> to avoid overflow in computation. |
- Returns
- an xexpression
- See also
- nanvar, nanmean
Definition at line 2874 of file xmath.hpp.
Compute the variance along the specified axes, excluding NaNs.
Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed for the flattened array by default, otherwise over the specified axes. Excluding NaNs changes the number of elements considered in the statistic.
Note: this function is not yet specialized for complex numbers.
- Parameters
-
e | an xexpression |
axes | the axes along which the variance is computed (optional) |
es | evaluation strategy to use (lazy (default), or immediate) |
- Template Parameters
-
T | the result type. The default is E::value_type . You can pass big_promote_value_type_t<E> to avoid overflow in computation. |
- Returns
- an xexpression
- See also
- nanstd, nanmean
Definition at line 2826 of file xmath.hpp.