Functions | |
template<class E> | |
auto | xt::nan_to_num (E &&e) |
Convert nan or +/- inf to numbers. | |
template<class T = void, class E, class X, class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< std::negation< is_reducer_options< X > >, std::negation< xtl::is_integral< std::decay_t< X > > > > = 0> | |
auto | xt::nanmin (E &&e, X &&axes, EVS es=EVS()) |
Minimum element over given axes, ignoring NaNs. | |
template<class T = void, class E, class X, class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< std::negation< is_reducer_options< X > >, std::negation< xtl::is_integral< std::decay_t< X > > > > = 0> | |
auto | xt::nanmax (E &&e, X &&axes, EVS es=EVS()) |
Maximum element along given axes, ignoring NaNs. | |
template<class T = void, class E, class X, class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< std::negation< is_reducer_options< X > >, std::negation< xtl::is_integral< std::decay_t< X > > > > = 0> | |
auto | xt::nansum (E &&e, X &&axes, EVS es=EVS()) |
Sum of elements over given axes, replacing NaN with 0. | |
template<class T = void, class E, class X, class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< std::negation< is_reducer_options< X > >, std::negation< xtl::is_integral< std::decay_t< X > > > > = 0> | |
auto | xt::nanprod (E &&e, X &&axes, EVS es=EVS()) |
Product of elements over given axes, replacing NaN with 1. | |
template<class T = void, class E> | |
auto | xt::nancumsum (E &&e, std::ptrdiff_t axis) |
Cumulative sum, replacing nan with 0. | |
template<class T = void, class E> | |
auto | xt::nancumprod (E &&e, std::ptrdiff_t axis) |
Cumulative product, replacing nan with 1. | |
template<class T = void, class E, class X, class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< std::negation< is_reducer_options< X > > > = 0> | |
auto | xt::nanmean (E &&e, X &&axes, EVS es=EVS()) |
Mean of elements over given axes, excluding NaNs. | |
template<class T = void, class E, class X, class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< std::negation< is_reducer_options< X > > > = 0> | |
auto | xt::nanvar (E &&e, X &&axes, EVS es=EVS()) |
Compute the variance along the specified axes, excluding NaNs. | |
template<class T = void, class E, class X, class EVS = std::tuple<evaluation_strategy::lazy_type>, xtl::check_concept< std::negation< is_reducer_options< X > > > = 0> | |
auto | xt::nanstd (E &&e, X &&axes, EVS es=EVS()) |
Compute the standard deviation along the specified axis, excluding nans. | |
|
inline |
Convert nan or +/- inf to numbers.
This functions converts NaN to 0, and +inf to the highest, -inf to the lowest floating point value of the same type.
e | input xexpression |
|
inline |
Cumulative product, replacing nan with 1.
Returns an xaccumulator for the product of elements over given axis, replacing nan with 1.
e | an xexpression |
axis | the axis along which the elements are accumulated (optional) |
T | the value type used for internal computation. The default is E::value_type . T is also used for determining the value type of the result, which is the type of T() * E::value_type() . You can pass big_promote_value_type_t<E> to avoid overflow in computation. |
|
inline |
Cumulative sum, replacing nan with 0.
Returns an xaccumulator for the sum of elements over given axis, replacing nan with 0.
e | an xexpression |
axis | the axis along which the elements are accumulated (optional) |
T | the value type used for internal computation. The default is E::value_type . T is also used for determining the value type of the result, which is the type of T() + E::value_type() . You can pass big_promote_value_type_t<E> to avoid overflow in computation. |
|
inline |
Maximum element along given axes, ignoring NaNs.
Returns an xreducer for the sum of elements over given axes
, ignoring NaN.
e | an xexpression |
axes | the axes along which the sum is performed (optional) |
es | evaluation strategy of the reducer (optional) |
T | the result type. The default is E::value_type . |
|
inline |
Mean of elements over given axes, excluding NaNs.
Returns an xreducer for the mean of elements over given axes, excluding NaNs. This is not the same as counting NaNs as zero, since excluding NaNs changes the number of elements considered in the statistic.
e | an xexpression |
axes | the axes along which the mean is computed (optional) |
es | the evaluation strategy (optional) |
T | the result type. The default is E::value_type . You can pass big_promote_value_type_t<E> to avoid overflow in computation. |
|
inline |
Minimum element over given axes, ignoring NaNs.
Returns an xreducer for the minimum of elements over given axes
, ignoring NaNs.
e | an xexpression |
axes | the axes along which the minimum is found (optional) |
es | evaluation strategy of the reducer (optional) |
T | the result type. The default is E::value_type . |
|
inline |
Product of elements over given axes, replacing NaN with 1.
Returns an xreducer for the sum of elements over given axes
, replacing nan with 1.
e | an xexpression |
axes | the axes along which the sum is performed (optional) |
es | evaluation strategy of the reducer (optional) |
T | the value type used for internal computation. The default is E::value_type . T is also used for determining the value type of the result, which is the type of T() * E::value_type() . You can pass big_promote_value_type_t<E> to avoid overflow in computation. |
|
inline |
Compute the standard deviation along the specified axis, excluding nans.
Returns the standard deviation, a measure of the spread of a distribution, of the array elements. The standard deviation is computed for the flattened array by default, otherwise over the specified axis. Excluding NaNs changes the number of elements considered in the statistic.
Note: this function is not yet specialized for complex numbers.
e | an xexpression |
axes | the axes along which the standard deviation is computed (optional) |
es | evaluation strategy to use (lazy (default), or immediate) |
T | the result type. The default is E::value_type . You can pass big_promote_value_type_t<E> to avoid overflow in computation. |
|
inline |
Sum of elements over given axes, replacing NaN with 0.
Returns an xreducer for the sum of elements over given axes
, ignoring NaN.
e | an xexpression |
axes | the axes along which the sum is performed (optional) |
es | evaluation strategy of the reducer (optional) |
T | the value type used for internal computation. The default is E::value_type . T is also used for determining the value type of the result, which is the type of T() + E::value_type() . You can pass big_promote_value_type_t<E> to avoid overflow in computation. |
|
inline |
Compute the variance along the specified axes, excluding NaNs.
Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed for the flattened array by default, otherwise over the specified axes. Excluding NaNs changes the number of elements considered in the statistic.
Note: this function is not yet specialized for complex numbers.
e | an xexpression |
axes | the axes along which the variance is computed (optional) |
es | evaluation strategy to use (lazy (default), or immediate) |
T | the result type. The default is E::value_type . You can pass big_promote_value_type_t<E> to avoid overflow in computation. |